摘要

为减少托管运营煤矿不安全行为导致的安全事故,针对此种运营模式下人员的不安全动作进行科学分类研究;现场调研了2017—2018年内蒙古、宁夏、新疆地区6个煤矿1 996名煤矿从业者的"三违"行为情况,从时间、工种及SCM行为产生特点3个方面对全部"三违"行为进行统计分类;基于k-means聚类算法建立了8个指标、4个子类的数据集合,并通过PCA降维绘制了可视化聚类散点图。分析表明:采用SCM和k-means的聚类算4种不安全动作分类占比关系与人工分析均得出了相同的结论;在所有不安全动作中,违章占比最大,错误占比最小;研究结果对于减少煤矿从业人员不安全动作行为,以及分级、分类预防安全事故的发生具有一定的指导意义。