摘要

针对卷纸包装检测效率低、人工成本高的问题,本研究基于机器视觉设计了一个卷纸包装检测模型,并命名为F-YOLOv4。首先利用工业相机在卷纸包装过程中采集目标图像,并人工标注制作成数据集;随后基于YOLOv4构建卷纸包装检测模型,通过引入轻量级的混合通道注意力模块,以强化重要特征同时避免背景噪声的引入;并设计了残差上采样模块以提升上采样的效果;最后在检测头部分,将不同分辨率的特征进行了融合以丰富特征图信息。研究结果表明,F-YOLOv4模型的准确率为97.53%,高于原始模型1.97%,检测速度为129 f/s,模型大小为39.7 MB。F-YOLOv4模型能够有效解决卷纸包装问题,为企业降低用人成本,提高生产效率。