摘要
传统的机场能见度检测方法存在泛化性差和成本高等问题,提出U型残差网络(U-ResNet)能够有效地将能见度数值性回归估计、U-Net图像分割网络、ResNet图像特征提取网络和科施米德(Koschmieder)定律结合在一起。取帧后的机场视频图像利用U型网络提取和融合不同语义层的特征信息并输出带有能见度的特征图,利用全局平均池化得到衰减系数;算法中心的ResNet模块对图像信息深层次挖掘和提取;衰减系数利用Koschmieder定律得到能见度气象光学视程。仿真数据选取某机场清晨8个小时视频数据,预测结果较为理想,决定系数R2达到0.98,相对误差仅为8%。
- 单位