摘要

针对高速列车运行控制中的牵引/制动力约束和执行器故障问题,提出一种基于偏格式动态线性化的无模型自适应容错控制(PFDL-MFAFTC)算法.首先,利用无模型自适应控制框架下的伪梯度概念,将难以精确获取参数(列车质量、阻力以及执行器故障等)的高速列车动力学模型转化为偏格式动态线性化数据模型;其次,利用径向基函数神经网络(RBFNN)处理执行器故障引起的非线性;然后,通过压缩映射方法对算法进行严格的收敛性证明,保证算法的收敛性;最后,通过高速列车仿真验证PFDL-MFAFTC算法的有效性和容错能力.

全文