密度峰值聚类算法(DPC算法)虽然具有简单高效的优点,但存在着需要人为确定截断距离的不足,从而造成聚类结果出现不准确。为解决这一问题,本文提出了一种基于K近邻的改进算法。该算法引入信息熵,采用属性加权的距离公式进行聚类,这样就解决了不同属性的权重影响问题;在聚类过程中通过计算数据点的近邻密度,再利用KNN近邻算法实现自动求解截断距离,据此得到聚类中心再进行聚类,通过实验证明,该算法在准确性、运行效率上均有不同程度的提升。