摘要

提出一种新的古滑坡变形预测方法。首先结合集合经验模态分解(EEMD)和奇异值分解(SVD)对古滑坡变形数据进行分解,然后利用分项组合神经网络预测古滑坡复活区的变形,最后利用多重分形消除趋势波动分析(MF-DFA)进行古滑坡多标度趋势评价。以王家坡滑坡为例分析本文方法的有效性。结果表明,组合分解模型EEMD-SVD较单项分解模型具有更强的数据分解能力,可有效实现滑坡变形数据的信息分解;基于神经网络的分项组合预测模型适用于滑坡变形预测,所得预测结果的相对误差基本在2%左右,预测精度较高,且外推预测显示滑坡变形仍会进一步增加,增加速率为1.23~1.36 mm/周期;MF-DFA模型的多标度特征分析结果显示,滑坡变形具有多重分形特征,变形有进一步增加的趋势,这与预测结果较为一致,可佐证前述预测结果的准确性。