摘要
针对遥感图像建筑物易受背景中道路、树木、阴影干扰而导致分割边界不清晰的问题,提出了一种融合分形几何特征的Resnet网络。所提模型基于编码-解码框架,以Resnet网络为主干网络,在编码阶段中引入融合分形先验的空洞空间金字塔池化模块(FD-ASPP),利用分形维数捕获遥感图像的分形特征,增强了Resnet网络的几何特征描述能力。解码阶段提出一种深度可分离卷积注意力融合机制(DSCAF),有效融合高层次特征和低层次特征,获取更加丰富的遥感图像语义信息和位置细节信息。在WHU遥感图像数据集上的实验表明,精确率达到0.944 8,召回率达到0.946 2,F1分数达到0.945 5,平均交并比mIoU达到0.941 5。所提模型与FCN、Segnet、Deeplab V3、U-net、SETR和AlignSeg等现有建筑物遥感语义分割模型相比,具有更好的分割精度,有效克服了道路、树木、阴影等因素的干扰,得到了较清晰的建筑物边界。
- 单位