摘要

抑郁症是最常见的精神类疾病之一,临床诊断存在困难,有必要寻找一种客观、高效的方式来辅助抑郁症的快速识别。通过融合中性、负性、正性音乐刺激下的不同脑电图(EEG)数据,提出一种新的抑郁识别方法来区分轻度抑郁症患者和正常对照组。在接受不同音乐刺激的同时同步记录抑郁症患者和正常对照组的脑电信号;然后从各模态的脑电图信号中提取线性和非线性特征,得到各模态的特征;此外,采用线性组合技术融合不同模型的脑电特征,构建全局特征向量,找出最佳的特征子集。最后比较了各分类器K-NN、DT和SVM的分类精度。实验结果表明,基于音乐刺激诱发脑电建立有效的抑郁症识别模型,KNN分类器的分类准确率最高达86.93%,可为抑郁症的辅助识别提供客观的指标和依据。