摘要
蝴蝶分类是保护蝴蝶物种多样性、观测大气变化的首要工作。为了提高蝴蝶种类识别的准确率,改善复杂网络算法运行时间长的缺陷,提出了一种基于迁移学习与改进型AlexNet的蝴蝶分类算法。该算法将AlexNet作为预训练模型,使其成为新模型的特征提取器,并在AlexNet算法的基础上,通过调整卷积核数量、替换归一化LRN(local response normalization)层、减少全连接层个数、增加均值下采样层等,进行改进与优化。实验结果表明,改进算法对蝴蝶种类识别的准确率高于原AlexNet算法,并具有更优的识别效率,提升了整体模型的性能。
- 单位