摘要
文章针对中医临床症状实体及属性抽取存在医疗短文本语义信息欠缺,常用的流水线方法易导致多任务之间产生错误累积的问题,提出一种基于深度学习的症状实体及属性抽取方法。首先通过基于BLSTM-CRF的序列标注模型完成“实体/修饰属性”识别;其次根据扩展步长的就近匹配原则生成高覆盖率、低冗余度的“实体—属性值”候选对;最后基于ERNIE-BGRU-MP完成关系分类,利用ERNIE丰富文本上下文信息,联合BGRU提取文本全局特征信息,采用最大池化法过滤冗余和噪声信息,提高模型的泛化性和鲁棒性。
-
单位江西中医药大学; 江西中医药大学计算机学院