摘要

针对CO2状态方程难以准确预测CO2在近临界区的物性参数的问题,采用以鲸鱼优化算法(WOA)优化最小二乘支持向量机(LSSVM)的组合模型(WOA-LSSVM),对近临界区CO2物性进行预测。预测结果表明:同REFPROP软件与PSO-LSSVM模型相比,WOA-LSSVM模型预测近临界区CO2物性具有更高的精度。相比REFPROP软件,WOA-LSSVM模型将密度与粘度预测结果的均方根误差由133.67、9.33降至35.61、1.58,平均相对误差由31.8%、30.25%降至6.88%、3.88%,决定系数由0.59、0.62提高至0.86、0.83。此外,相对误差在10%以下占比均由0%分别提高到69.23%、92.31%。