摘要

【目的】研究拓扑向量空间中向量极值问题的广义鞍点最优性条件及Lagrange对偶问题。【方法】引入拓扑向量空间中广义次似凸映射和择一定理,并以广义鞍点理论为分析基础。【结果】在刻画广义鞍点性质的基础上构建了拓扑空间中广义鞍点与向量极值问题弱Pareto最优解之间的关系及其对偶定理。【结论】理论分析结果表明向量极值问题的广义鞍点是弱Pareto最优解的必要不充分条件,给出了目标函数在其约束映射满足广义Slater约束规格条件下的Lagrange强、弱对偶定理。