摘要

电线绝缘材料老化状态的准确评估有助于减少因电线绝缘老化引起的火灾,该实验基于拉曼光谱检测平台及自行搭建的老化设备,对13种电线绝缘材料(聚偏氟乙烯、聚丙烯、聚四氯乙烯、尼龙、亚大尼龙、聚氨酯、乳胶、聚全氟乙丙烯树脂、橡胶、聚乙烯、聚氯乙烯、硅胶、进口硅胶)进行加速温度老化以及加速紫外老化试验并定期检测,温度老化10个时间段,时间间隔为32 h,每个老化时间15个样本数据,获得温度老化的每种材料共150个样本光谱数据;紫外老化13个时间段,时间间隔16 h,每个老化时间15个样本数据,获得紫外老化的每种材料共195个样本光谱数据。依据老化时间段,温度老化分为10类,紫外老化分为13类,采用线性回归分类和支持向量机对原始光谱数据进行分类,两种分类算法准确率均在80%以上的材料有尼龙、聚氨酯、特氟龙、橡胶等,但部分材料的分类准确率却低于70%,在对原始光谱数据进行支持向量机分类时,由于样本数量多以及光谱维度高,支持向量机分类所需时间较长,为进一步提升分类准确率以及分类速度,对原始光谱数据进行迭代自适应加权惩罚最小二乘法、五点三次平滑等预处理方法,采用PCA压缩,样本光谱维数从2 048维降至3维,由于降维后的样本光谱维数小于样本数量,无法满足线性回归分类要求,故采用支持向量机进行分类,经过预处理以及特征提取后,数据的分类效果得到大幅度提升,所有材料的温度老化、紫外老化均获得90%以上的分类准确率,支持向量机的分类速度亦得到大幅度提升,其结果为电线绝缘材料老化状态的有效评估提供理论依据,对预防因绝缘老化引起的事故提供技术支持。