现代医学技术的进步离不开医学影像的辅助诊断,随着CT技术应用越来越广泛,如何能够用更少剂量的X射线重建出更清晰的CT图像成为了众多学者的研究目标。以深度学习为基础的卷积神经网络图像去噪技术近年来发展迅速。本文提出一种以多层空洞卷积来提取特征的卷积神经网络模型用于低剂量CT图像去噪,并通过实验证明该模型在低剂量CT图像去噪方面的良好表现以及在不同条件下该网络模型的实用性。