摘要

对于板壳问题,共有三种数值模拟方案:线性或非线性的板壳理论、退化连续体方案和直接三维连续体方案。无网格法近似函数可具有C1甚至更高的连续性,便于在K irchhoff-Love理论中应用。但当各种无网格法用于M ind lin-R e issner板理论时,会遇到数值锁死的困扰。对比之下,三维连续体方案是最简单,最精确但并不常用的一种方案。无网格法近似函数具有高度光滑性,在板壳的厚度方向仅布置2~5层点就可以很好地捕捉此方向场的梯度,同时还可以在一定参数范围内避免剪切和体积锁死,在处理复杂本构关系、非线性板壳等问题中更是具有很大优势。本文采用无网格伽辽金法(EFG)和三维连续体方案分析了线性板壳问题,与有限单元法做了对比,并讨论了数值锁死等问题。