摘要

协同过滤算法是服务推荐系统中最有效和应用最广泛的推荐方法,其侧重于提高推荐结果的准确性。然而,在大数据背景下,用户行为数据不仅经常频繁更新而且数据规模增长迅速,传统的协同过滤算法需要穷举搜索所有数据,相似度计算耗时较高,推荐效率低,无法满足用户实时体验的需求服务。快速从大数据中获得高质量的推荐服务成为一种新的需求,为此,提出基于局部敏感哈希技术的协同过滤算法,算法过滤了绝大多数不相似的项目,避免了冗余的相似度计算,另一方面算法将用户行为数据哈希为二进制哈希编码,进而保护用户隐私。最后,在不同规模尺寸的数据集上与主流算法对比,实验表明提出的算法在效率和准确度间能够取得较好的折衷。