摘要

该文提出了一种新的自动目标检测算法,实现对自然场景图像及高分辨率遥感图像中结构相对复杂的人造目标的自动检测。该方法基于组成物体的几何部件处理问题,降低了对训练样本数量的需求。首先选择两类典型特征,基于机器学习训练对应的分类器,有效地减少了背景中某些物体与前景目标部分特性相似对检测方法准确率的影响;然后利用标值点过程对问题建模,以对目标分布的先验约束和分类器的响应作为数据能量,自顶向下地自动检测目标。实验结果表明,该方法准确率高、鲁棒性好,具有较强的实际应用价值。