摘要

针对合成孔径雷达(SAR)图像中的舰船检测与分类问题,常规的图像处理技术或者机器学习方式难以准确检测出海上舰船的类别以及当前舰船运行状态。因海上舰船目标具有相对于SAR图像尺寸较小、方位难以测算以及容易与其他目标混淆的特点,针对上述问题设计了端到端的海上舰船分类与状态感知模型,加入特征金字塔以达到拥有对于微小目标提取其深度特征,同时又保留其相对位置的目的;使用残差结构以解决特征融合网络层数增加导致的梯度消失问题;最后加入舰船状态感知模块,使其最终可以得到海上舰船目标相对于图像的角度值。使用公开SAR卫星图像进行了多次实验,最终体现出提出的端到端的模型具有较高的识别率以及良好的舰船状态估计能力。