摘要
首先,对道路坑洼图片进行预处理以获得坑洼数据集Pothole-set;其次,将YOLOv3的激活函数修改为Mish激活函数,以提高模型准确性和泛化能力;接着,将YOLOv3的3个输出尺度进行融合以减小复杂度;然后,使用K-Means方法对坑洼数据集边界框尺寸进行聚类,同时,对坑洼数据集进行网格划分,获得最终的输出特征图;最后,将余弦退火、Mixup、标签平滑技术应用于训练过程中以提高检测精度,获得最终的坑洼检测模型YOLOv3-Pt。实验结果表明:相比于YOLOv3,YOLOv3-Pt在复杂环境下对坑洼的检测精度提升了13.99%,能够满足坑洼检测精度的需要。
-
单位机电工程学院; 中南大学