摘要
针对传统模糊C均值(FCM)聚类算法在处理噪声图像时易受到噪声影响的问题,提出了基于FCM的小波域特征增强的噪声图像分割方法。首先,将噪声图像进行二维小波分解;其次,对近似系数进行边缘增强,同时利用人工蜂群(ABC)优化算法对细节系数进行阈值处理,并将处理后的系数进行小波重构;最后,对重构后的图片使用FCM算法来进行图像分割。选取5幅典型的灰度图像,分别添加高斯噪声和椒盐噪声,使用多种方法进行分割,以分割后图像的峰值信噪比(PSNR)和误分率(ME)作为性能指标,实验结果表明,所提方法分割后的图片相较于传统FCM聚类算法分割方法和粒子群优化(PSO)分割方法分割后的图片在PSNR上最多分别有281%和54%的提升,在ME上最多分别有55%和41%的降低。可见所提出的分割方法较好地保留了图像边缘纹理信息,其抗噪性能与分割性能得到了提升。
- 单位