摘要
针对采煤现场强噪声背景下采煤机齿轮箱振动信号集合经验模态分解(EEMD)故障特征不明显和分解效率较低的问题,提出基于改进小波去噪预处理和EEMD的故障诊断方法。采用小波改进阈值函数法对振动信号进行去噪预处理,与传统小波阈值函数法相比能够有效地提高信号的信噪比。对去噪后的信号进行EEMD分解得到若干个本征模态分量(IMF),计算各IMF分量的相关度并剔除虚假分量。将该方法应用于采煤机齿轮箱行星轮的故障诊断,通过对真实的IMF分量进行频谱分析并提取信号的故障特征频率,与未去噪的信号进行对比。研究结果表明:该方法能够突出故障特征频率,使分解效率提高17.35%,并能进一步减小模态混叠现象。
-
单位机电工程学院; 高性能复杂制造国家重点实验室; 中南大学