摘要

现有基于低秩表示的子空间聚类算法(LRR)无法有效地处理大规模数据,聚类正确率不高,以及分布式低秩子空间聚类算法(DFC-LRR)不能直接处理高维数据.为此,文中提出了一种基于张量和分布式方法的子空间聚类算法.该算法首先将高维数据视为张量,在数据的自表示中引入张量乘法,从而将LRR子空间聚类算法拓展到高维数据;然后采用分布式并行计算得到低秩表示的系数张量,并对系数张量的每个侧面切片稀疏化,得到稀疏相似度矩阵.在公开数据集Extended YaleB、COIL20和UCSD上与DFC-LRR的对比实验结果表明,文中算法能有效地提高聚类正确率,且分布式计算能明显降低算法的运行时间.