摘要
为探讨深度学习方法在小流域实时精细化径流预报中的适用性,建立了基于长短时记忆网络(LSTM)的英格兰北威克试验站小流域实时径流预报模型。借助深度学习框架Tensorflow,采用LSTM识别输入特征及输入输出间的复杂非线性关系,将逐时段流域径流、前期降雨及气温三要素作为输入,分析了多种输入组合和多个时间步长的实时径流预报效果。结果表明:基于LSTM的模型在各子流域的径流预报效果较好,训练期和验证期的纳什系数均高于0.90,该模型可用于研究区的实时径流预报,可为流域防洪调度提供技术支撑。
-
单位西北农林科技大学; 建筑工程学院