基于改进YOLOv4的棉花检测算法

作者:刘正波*; 鲍义东; 孟庆伟
来源:计算机系统应用, 2021, 30(08): 164-170.
DOI:10.15888/j.cnki.csa.008155

摘要

为提高自动化采棉机械的采摘效率和智能化水平,避免误采摘、漏采摘,采用以复杂背景下实现单个棉花检测为目标,提出一种改进的YOLOv4目标检测算法.使用K-means算法进行聚类锚框尺寸的筛选,得到适合棉花数据集的精细化锚框尺寸.同时在YOLOv4算法中引入注意力机制,在其网络结构中添加SENet (Squeeze-andExcitation Networks)模块.在模型训练时,首先在公开数据集上训练取得预训练权重,在预训练模型上使用棉花数据集微调参数,并使用数据增强方式扩充原始数据集,在预训练模型上再次训练.实验结果表明,本文提出的YOLOv4改进算法,能够很好的实现田间环境下的棉花检测.