摘要

针对联邦学习训练过程中通信资源有限的问题,本文提出了两种联邦学习算法:自适应量化权重算法和权重复用控制算法,前者对权重的位数进行压缩,减少通信过程中传输的比特数,算法在迭代过程中,自适应调整量化因子,不断减少量化误差;后者能阻止不必要的更新上传,从而减少上传的比特数.基于标准检测数据集Mnist和Cifar10,在CNN和MLP网络模型上做了仿真模拟,实验结果表明,与典型的联邦平均算法相比,提出的算法降低了75%以上的通信成本.