木材缺陷的快速检测和精准定位是实现木材加工机械化、一体化的首要条件。采用卷积神经网络(CNN)检测木材缺陷,不仅可以克服人工检测效率低、准确率低的问题,还可以节省劳动力、提高木材检测的智能化水平。本文概述了CNN的理论和典型网络模型,梳理、总结了CNN在木材缺陷图像分割、特征提取、识别分类中的研究与应用现状,并对CNN在木材缺陷检测领域的发展趋势进行展望,进一步拓展卷积神经网络在木材缺陷检测中的应用。