本文研究了卷积神经网络中AlexNet模型在5种中草药图像分类过程中的应用。通过Python爬虫算法爬取百度图片中5类中草药3 000张图片,并通过数据增扩算法将数据集扩增到12 000张,以满足模型训练的需求。为了提高训练的效率将数据集转换成LMDB格式,并采用减均值的方式加快模型收敛,以最大限度平衡用CPU训练带来的训练周期过长的影响。合理调整模型参数,经过300次迭代得到87.5%的分类准确率。