摘要

针对当前卷积神经网络在入侵检测领域的效率低,误报率高等问题,提出一种新型的轻量级卷积神经网络.通过将SqueezeNet网络模型中Fire模块中的3×3卷积核替换成一组深度可分离的3×1与1×3的卷积核,并构建SpeedNet网络结构,替换模型卷积获得变形结构.实验结果表明,与传统的CNN网络架构相比,不降低精确度的情况下,提高了检测效率.