摘要

针对基于特征点的图像匹配方式在复杂纹理场景中匹配效果不理想的问题,提出一种将加速稳健特征算法(SURF)与一致性敏感哈希匹配结合的图像匹配算法(CSH)。使用SURF算法对图像进行特征点提取,再以特征点为圆心构建特征区域,最后对特征区域使用CSH进行匹配,从而实现高精确匹配。为了进一步加快算法运行速度,对现有的SURF算法进行修改,在提取SURF特征点时去除了对于特征点方向的计算。仿真实验证明,算法较一般的特征算法在复杂纹理图像匹配中效果更佳,且较CSH算法效率提升了10%~15%。