摘要

人体动作预测是计算机视觉和图形学领域的重要任务。现有的方法主要基于人体骨架和视频图像表示,相较于骨架和视频表示,三维几何数据表示人体动作更加直观和形象化。为此提出了一种基于PointNet和长短期记忆(LSTM)网络的三维点云表示的人体动作预测方法。首先,使用改进的PointNet对人体动作序列中的每帧三维点云进行特征提取;其次,通过LSTM学习动作序列的时间信息融合动作序列的时空特征;最后,将时空特征通过全连接神经网络(FC)进行动作预测;此外,还构造了三维点云表示的人体动作序列数据集。实验结果表明,所提方法在预测下一帧三维人体点云坐标时的平均损失值低于10-3。