摘要

边缘检测的任务是将亮度变化明显的像素点识别为目标边缘,是计算机视觉低层级问题,并且边缘检测在对象识别和检测、对象提议生成、图像分割有着重要应用。如今,边缘检测已经产生了多类方法,如基于梯度的传统检测方法、基于深度学习的边缘检测算法,还有结合新兴技术的检测方法等。对这些方法进行更精细的分类,让研究者更清楚地了解边缘检测的发展趋势。对传统边缘检测的理论依据及实现方法做出介绍;详细介绍近年来主要的深度学习边缘检测方法,根据使用的方法进行分类,并对其中所使用的创新技术进行说明,如分支结构、特征融合和损失函数。衡量算法性能采用评估指标:单图最佳阈值(ODS)和帧数(FPS),在基础数据集(BSDS500)上进行对比。对边缘检测的研究现状进行分析和总结,对未来可能的研究方向进行展望。

  • 单位
    辽宁工业大学