摘要

将常规储层测井解释方法应用于煤层气储层测井解释,其效果存在一定的折扣。为了改善传统方法在煤层气测井解释中出现的问题,将深度学习的思想引入测井解释,提出受限玻尔兹曼机的数量、受限玻尔兹曼机隐含层神经元数量、分类阈值的确定方法,利用深度信念网络进行煤层识别及煤层气含气量的预测。实验结果表明:首先,在交会图法效果不好的情况下,通过深度信念网络进行煤层识别,继而对识别结果进行适当校正,煤层识别成功率可达到90%以上;其次,经过多种方法的对比,利用深度信念网络进行煤层气含气量预测的效果,要好于BP神经网络、多元回归统计以及Langmuir方程三种方法。深度学习改进了传统的BP神经网络,具备更强的复杂函数泛化能力,适用于煤层气测井解释,并具有进一步的推广价值。

  • 单位
    新疆工程学院