摘要
提出一种基于最大相关最小冗余(mRMR)算法和蜉蝣算法优化正则化极限学习机(MA-RELM)的出口SO2质量浓度预测模型。通过机理分析确定初始输入变量,利用改进的时延分析方法对初始输入变量进行时延补偿,采用mRMR算法对各个初始输入变量进行重要性排序,搭建正则化极限学习机(RELM)预测模型,并利用蜉蝣算法确定模型参数。结果表明:与最小二乘支持向量机(LSSVM)、长短期记忆网络(LSTM)和极限学习机(ELM)相比,RELM预测模型的均方根误差分别降低了36%、38%和26%;与粒子群算法(PSO)和灰狼算法(GWO)寻优后的模型相比,MA-RELM预测模型误差最低,该模型能够对出口SO2质量浓度进行准确预测。
- 单位