摘要
YOLOv3算法被广泛地应用于目标检测任务。虽然在YOLOv3基础上改进的一些算法取得了一定的成果,但是仍存在表征能力不足且检测精度不高的问题,尤其对小目标的检测还不能满足需求。针对上述问题,提出了一种改进YOLOv3的遥感图像小目标检测算法。首先,使用K均值聚类变换(K-means-T)算法优化锚框的大小,从而提升先验框和真实框之间的匹配度;其次,优化置信度损失函数,以解决难易样本分布不均衡的问题;最后,引入注意力机制来提高算法对细节信息的感知能力。在RSOD数据集上进行实验的结果显示,与原始的YOLOv3算法、YOLOv4算法相比,所提算法在小目标“飞机(aircraft)”类上的平均精确率(AP)分别提高了7.3个百分点和5.9个百分点。这表明所提算法能够有效检测遥感图像小目标,具有更高的准确率。
- 单位