摘要

本文研究了复合Poisson模型带投资-借贷利率和固定交易费用的最优分红问题。通过控制分红时刻和分红量,最大化直到绝对破产时刻的累积期望折现分红。由于考虑固定交易费用,问题为一个随机脉冲控制问题。首先,本文给出了一个策略是平稳马氏策略的充分必要条件。借助于测度值生成元理论得到测度值动态规划方程(简称测度值DPE),并且在没有任何附加条件下证明了验证定理。通过Lebesgue分解,本文讨论了测度值DPE和拟变分不等式(简称QVI)之间的关系,证明了最优分红策略为具有波段结构的平稳马氏策略。最后,本文给出了求解n-波段策略和相应值函数的算法。当索赔额服从指数分布时,得到了值函数的显示解和最优分红策略。