摘要

为了让电力工作人员在电力作业中采取规范的防护措施,提出了一种基于改进YOLOv4的电力高空作业识别及安全带佩戴检测算法。首先,该算法采用MobileNetv2作为主干提取网络,在保证较好的特征提取效果同时降低了网络的参数量,提高模型的识别速度;然后使用K-means聚类算法对数据集中的目标边框重新聚类,并调整空间金字塔池化结构,提高模型的检测精度;最后使用Soft-NMS算法替换原NMS算法降低目标的漏检率。实验结果表明,改进YOLOv4网络模型比原YOLOv4模型mAP提高3.2%,检测速度提高30fps,模型的训练权重大小压缩4.16倍,算法在高空作业安全带检测上具有很强的实用性和高效性。