摘要
在建筑空调水系统的优化控制领域,基于模型的控制方法得到了广泛的研究和验证。但基于模型的控制很大程度上依赖于精确的系统性能模型和足够的传感器,而这对于某些建筑来说是很难获得的。针对这一问题,本文提出了一种基于深度Q神经网络(DQN)的空调冷却水系统无模型优化方法,该方法以室外空气湿球温度、系统冷负荷及冷水机组开启状态为状态,以冷却塔风机和水泵的频率为动作,以系统性能系数(COP)为奖励。根据实际系统的实测数据进行建模,在模拟环境中使用基于粒子群优化算法的模型优化方法、基于Q值(Q learning)优化的强化学习方法和基于DQN的无模型优化方法进行实验,结果表明基于DQN的无模型优化方法的优化效果最好,有7.68%的平均COP提升与7.15%的节能率,在复杂系统下拥有较好的节能效果。
- 单位