摘要
列车运行安全与列车驾驶员的注意力状态密切相关,为了快速准确检测驾驶员的注意力状态,提出一种基于特征编码和卷积神经网络(FECNN)的注意力状态检测方法。对从Kaggle数据集上下载的5名参与者的脑电图数据,用快速独立成分分析(Fast ICA)和小波滤波方法进行去噪,从中提取微分熵(DE)特征,并进行最大最小归一化;然后将DE特征编码成对应的矩阵,转化为对应的彩色图,标上对应的状态类别。将数据预处理后的彩色图作为卷积神经网络的输入,通过对模型参数的不断优化,得到分类精度较好的注意力状态检测模型。对提取DE特征和没有提取DE特征的10个样本进行实验,平均检测精度分别为95.10%±2.88%和93.12%±3.38%,高于传统的DNN模型和Le Net-5模型,并且模型更具有稳定性。所提出的FECNN模型,可为注意力状态检测提供一种新的思路,在驾驶员疲劳检测系统的开发方面具有一定的应用价值。
- 单位