摘要

同步相量测量单元(PMU)能够直接获取发电机动态过程中的功角等量测数据,由于实际的量测数据中含有随机噪声,为了得到更精确的发电机状态信息,有必要对量测数据进行滤波处理。提出一种基于无迹粒子滤波(UPF)的发电机动态状态估计新方法。首先,该方法基于发电机四阶动态方程建立了发电机动态状态估计模型,其次,在粒子滤波(PF)的框架下,该方法采用无迹卡尔曼滤波(UKF)求解PF的重要性密度函数,且在生成预测粒子的过程中使用了最新的量测信息,使得粒子的分布更加接近真实状态的后验概率分布。最后,通过美国西部系统协调委员会(WSCC)3机9节点系统和某实际电网系统的算例测试,将所提算法与UKF及PF的性能进行了对比。仿真结果表明,UPF在估计精度及对噪声的鲁棒性方面均优于PF与UKF。

  • 单位
    电气学院; 江苏省电力公司电力科学研究院; 河海大学