摘要

基于铁路的特殊视频场景,研究铁路入侵物体目标识别技术,提出并应用1种改进的高斯混合模型,拟定合适的颜色变化阈值和背景更新速率,对图像的不同部分分别进行背景更新,实现铁路视频的背景建模,并由此得到稳定的背景图像;通过背景像素与前景像素的贝叶斯分类实现对铁路入侵物体的准确检测。对典型的铁路入侵行为视频进行实验分析,结果表明:应用改进的高斯混合模型可以更好地适应场景的变化,并能够更加快速、准确地实现在铁路环境下对入侵物体的目标识别。