摘要

为提高溶解氧预测精度,研究提出海鸥优化算法(SOA)与支持向量机(SVM)、BP神经网络相融合的预测方法。基于云南省西双版纳州国家重要供水水源地景洪电站2009年1月至2020年9月的逐月溶解氧监测数据构建4种预测方案,利用SOA优化SVM关键参数、BP神经网络权阈值分别构建SOA-SVM、SOA-BP模型对景洪电站溶解氧进行预测,预测结果与SVM、BP模型作对比。结果表明:SOA-SVM、SOA-BP模型对4种方案溶解氧预测的平均相对误差绝对值分别在4.07%~4.98%、3.85%~4.83%之间,平均绝对误差绝对值分别在0.309~0.374、0.294~0.371 mg/L之间,预测精度优于SVM、BP模型,具有较好的预测精度和泛化能力。SOA能有效优化SVM关键参数和BP神经网络权阈值;SOA-SVM、SOA-BP模型用于溶解氧预测是可行的;模型及优化方法可为相关预测研究提供参考。