摘要
为了提升光纤陀螺温度漂移模型建模的准确性及补偿的效果,提出了一种基于改进支持向量机的多尺度建模和回归方法。首先分析了造成光纤陀螺温度漂移的关键因素,给出了建模的属性参数和温度试验。然后根据经验模态分解得到的本征模态函数排列熵的变化趋势,得出了回归精度和熵之间的变化关系,进而提出了基于信号分解的多尺度回归方法。为了提高上述多尺度回归算法的适应性,在传统支持向量机的基础上,提出了基于组合核函数的支持向量机回归算法,以适应不同特性的回归数据集。为了进一步提高回归精度,基于降低回归数据复杂度的分段回归思想,在上述多尺度回归的基础上提出了双-多尺度回归,并验证了方法的有效性。最后,将提出的算法以实际的光纤陀螺温度漂移数据进行验证,结果表明,相比于传统的支持向量机和反向传播神经网络具有更好的回归精度,温度漂移模型也更加精确,以均方误差指标为例,回归精度提升了两个数量级。
- 单位