提出了一个基于增量学习支持向量机的DoS入侵检测方法,其基本思想是将训练样本库分割成几个互不相交的训练子库,按批次对各个训练子库样本进行训练,每次训练中只保留支持向量,去除非支持向量。与传统的基于支持向量机的入侵检测方法对比的试验表明,该方法在不影响检测性能的同时明显减少了训练时间。