摘要
基于自动引导小车(AGV)的快递包裹自动分拣系统是智能物流的研究热点,路径规划是其关键问题之一.在快递包裹分拣系统中, AGV具有高密集性和车辆数量较大的特点,这种情况极易造成AGV拥堵,使得整个系统的性能降低.针对此问题本文提出可避免拥挤的CAA*(Congestion-avoidable A*)算法,该算法以A*算法为基础,引入动态属性节点,建立动态环境模型,对各个节点可能发生的拥挤情况进行预测,判断是否存在潜在的拥挤节点,在路径规划过程中绕过潜在的拥堵节点,避免发生拥堵现象.实验结果表明,本文所提的CAA*路径规划方法在具有高密集度和较大规模的AGV场景中,能有效避免拥堵,从而提高场地AGV的密集度和系统的分拣效率.对实际应用场地的仿真表明,本文的算法比传统的A*算法AGV密集度提高了28.57%,系统分拣效率提高了24.29%.
- 单位