摘要

提出一种利用高光谱技术进行土壤锰污染分级评价的方法。以FieldSpec3地物光谱仪采集矿区土壤光谱反射率150份,随机分成校正集(115份)和检验集(35份)。光谱经小波去噪和多元散射校正(MSC)处理后,以主成分分析法(PCA)降维。将降维所得的前5个主成分数据为输入变量,分别采用Fisher线性判别、Byes逐步判别、模糊模式识别以及BP-ANN判别四种方法建立了土壤锰污染分级评价模型,并利用35个未知样对模型进行检验。结果表明:Fisher线性判别与模糊模式识别预测准确率为80%,Byes逐步判别为82.86%,BP-ANN模型预测精度最高,达85.71%。说明以高光谱技术进行土壤锰污染分级评价是可行,且BP-ANN是建模的优选算法。