针对面向能源消纳的电力负荷实时调控需求,以电热水器为例建立调控模型,提出一种改进DBSCANRNN算法的电力负荷可调特征提取与可调潜力挖掘方法。以改进DBSCAN聚类结果作为RNN输入获得一种深度学习新策略,基于改进DBSCAN-RNN进行电器群设定温度与天气温度、电器负荷功率的建模,考虑用户电器使用习惯,输出输入量对电器实际功率的影响因子以及电器可调功率与真实功率对应的状态方程参数。某市电热水器群实际数据结果表明所提方法可正确有效地获取海量电热水器群聚合负荷模型及其可调功率。