摘要
本文针对低空小型无人机在雷达探测中散射截面积小、相干积累时间短等问题,提出一种基于贝叶斯统计机器学习的逆合成孔径雷达超分辨成像方法。利用无人机相对空域背景的稀疏性先验知识引入重尾的拉普拉斯先验概率分布,并基于观测系统噪声高斯分布假设建立贝叶斯后验推理模型。针对先验分布的非共轭性,引入分层贝叶斯模型。最后应用变分贝叶斯期望最大算法,解析求解目标后向散射系数后验概率密度函数,并校正目标非系统性平动误差及其造成的成像散焦。与传统方法相比,该方法能够有效解决无人机目标雷达散射截面积较小带来的成像信噪比低以及相干积累时间较短带来的成像分辨率低等问题。仿真实验结果证明了本文所提方法的有效性和优越性。
-
单位自动化学院; 中国民航大学