摘要
为提高红外图像目标检测的精度和实时性,提出一种基于伪模态转换的红外目标融合检测算法.首先,利用双循环的生成对抗网络无需训练图像场景匹配的优势,获取红外图像所对应的伪可见光图像;然后,构建残差网络对双模态图像进行特征提取,并采取add叠加方式对特征向量进行融合,利用可见光图像丰富的语义信息来弥补红外图像目标信息的缺失,从而提高检测精度;最后,考虑到目标检测效率问题,采用YOLOv3单阶段检测网络对双模态目标进行三个尺度的预测,并利用逻辑回归模型对目标进行分类.实验结果表明,该算法能够有效地提高目标检测准确率.
-
单位中国科学院; 上海海事大学