摘要

针对微型电机转子焊点检测费时费力且准确率低的问题,提出一种基于残差神经网络的转子焊点检测方法。首先运用网络预训练的方法加速网络训练,提高模型准确率;然后在网络中引入批量归一化,避免出现梯度消失;最后对图像进行数据增强,减少过拟合现象。实验表明,与K最近邻(KNN)等经典算法相比,该算法在测试集上的准确率达到91.5%,与工人检测的速度相比提高了3.5倍,具有很好的识别效果。