摘要

材料工艺与性能的关系具有复杂、非线性交互等特点。本文根据TC11钛合金力学性能与其影响因素之间的映射关系,以大量的试验数据为基础,建立了BP神经网络模型。模型的输入包括锻造温度、锻后冷却方式等热加工工艺参数;输出为常用的力学性能指标,即抗拉强度、屈服强度、延伸率和断面收缩率。运用该模型对TC11钛合金力学性能进行了预测,并通过试验数据对模型的预测精度进行了可靠性验证。同时,运用已建立的神经网络模型对TC11钛合金工艺参数与力学性能的关系进行了分析。结果表明,所建立的力学性能预测模型具有良好的外推能力,并且可以很好地反映出该合金的工艺-性能之间的复杂关系。